Math Work Packet #3

April 13th- April 24th

- 1) Complete the worksheets **read** the **examples** on top and **circle** any **clue words** and numbers no calculators
- 2) Work on ALEKS for at least 1 hour during the week (if you have internet)

Name:	Teacher:	Date:	Score:
¹ 4 - (-6)	² -35 ÷ 7	$\frac{5}{8} - \frac{13}{8}$	$\frac{5}{7} - \left(-\frac{1}{6}\right)$
$5 \qquad -\frac{1}{5} \cdot -\frac{3}{2}$	⁶ 7.4 – (–3.7)	⁷ 52.682 • 100	⁸ (−12 • 2) ÷ 4
⁹ (-6) + (-8)	¹⁰ 4 • −2	¹¹ $\left(-\frac{7}{4}\right) + \left(-\frac{7}{4}\right)$	$\left(-\frac{9}{7}\right)-\frac{7}{8}$
$\frac{13}{8} \div -\frac{8}{5}$	¹⁴ 5. 1 – 6. 1	¹⁵ 6400 ÷ 1000	¹⁶ 2 ÷ 2 • −10 ÷ 2
¹⁷ (-3) + (-4)	¹⁸ -40 ÷ -10	$^{19} \qquad \frac{5}{4} + \left(-\frac{7}{4}\right)$	$\frac{1}{3} + \left(-\frac{3}{7}\right)$

Name: _		Teacher:	Date:	Score:
21	$\frac{3}{2} \div -\frac{2}{5}$	²² 2.4 - (-7.7)	²³ 8.2 • 1000	24 -2 + 6 - 4 ÷ -2
25	5 - (-8)	²⁶ −2 • −7	$\frac{27}{7} \frac{3}{7} - \left(-\frac{4}{7}\right)$	$\begin{pmatrix} -\frac{1}{2} \end{pmatrix} - \left(-\frac{5}{3}\right)$
29	$\frac{3}{4} \cdot -\frac{4}{5}$	³⁰ (-3.1) + 1.8	³¹ .0231 • 10000	32 (10 • 2) ÷ (-2)
33	8-(-4)	³⁴ 42 ÷ −7	$\frac{15}{8} + \left(-\frac{9}{8}\right)$	$\begin{pmatrix} -\frac{4}{3} \end{pmatrix} - \frac{3}{2}$
37	$\frac{1}{3} \cdot -\frac{3}{2}$	³⁸ (-7.1) - 7.1	³⁹ 7.25 ÷ 1000	⁴⁰ 1 - (2 + 5)

Name:		Teacher:	Date:	Score:
1	-6-4	² -50 ÷ -10	$\frac{3}{-\frac{4}{3}-\frac{1}{3}}$	$4 \frac{7}{8} + \left(-\frac{2}{3}\right)$
5	$-\frac{2}{9}\cdot\frac{1}{5}$	⁶ –7.9 – 0.8	⁷ 0.04 • 100	⁸ 4 • 4 - (4 - 1)
9	8 + (-2)	¹⁰ -4 • -9	$\frac{1}{3} - \frac{2}{3}$	$4 - \frac{9}{7}$
13	$\frac{1}{4} \div \frac{2}{3}$	¹⁴ -4.7 - 4.2	¹⁵ -3.8 ÷ 10000	¹⁶ $3+5-8 \div 2$
17	6 - (-6)	¹⁸ 63 ÷ 9	$^{19} -\frac{9}{5} + \left(-\frac{7}{5}\right)$	$^{20} \qquad \frac{5}{4} + \left(-\frac{1}{8}\right)$

Name	·	Teacher:	Date:	Score:
21	$-\frac{1}{8} \cdot -\frac{1}{5}$	²² -5.7 + (-7.6)	²³ 3.6 • 10000	²⁴ $(10+2) \div (6-3)$
25	-4 - (-3)	²⁶ -6 • 9	$\frac{1}{6} - \frac{5}{6}$	$\frac{2}{5} - \frac{5}{3}$
29	$-\frac{1}{3} \div \frac{4}{3}$	³⁰ -6.1 + 7.8	³¹ 2 ÷ 100	³² (4 + 9 + 7) ÷ 5
33	-3 + 7	³⁴ −4 ÷ 2	$-\frac{8}{7}-\frac{6}{7}$	$\frac{1}{8} + \left(-\frac{2}{7}\right)$
37	$-\frac{2}{3}\cdot\frac{5}{4}$	³⁸ 1 - (-5.2)	³⁹ 21.5 • 100	4^{40} 4 • 2 – 8 ÷ 4

Name.

Samples

A sample is a part of a population. Samples are used when it would be too timeconsuming or too expensive to survey an entire population.

A population may be people, such as all the people in a city, or it may be objects, such as all the books in a bookstore.

For a sample to be fair, it must be a **random sample**. In a random sample, each person or object in the population has an equal chance of being selected for the sample.

Jeremy is taking a survey of all sixth-grade students to find out the students' favorite holiday.

- A random sample would be a group chosen by drawing names from a hat containing all sixth-grade students' names.
- A sample that is not random would be Jeremy's best friends.

Selecting a random sample is one way to make sure the sample is representative of the population.

- 1. Carole wants to find out the favorite restaurants of members of her community. Did she choose a random sample? Explain.
 - a. Carole stands at the front entrance of the town library on Wednesday and randomly chooses people arriving.

b. Carole calls teachers randomly chosen from a list of all school employees.

c. Carole surveys people randomly chosen from a list of all the members of her community.

C Harcourt

- **2.** Evan is on a committee to determine if the players in the Tri-Town Soccer League want to extend the season. Tell whether he should survey *all the players* or use *a sample* in each situation.
 - a. There are 40 players in the league.
 - **b.** The players are difficult to reach since they live in many areas.
 - c. There are 650 players in the league.

Samples

Tell whether you would survey the population or use a sample. Explain.

1. You want to know the type of computer, if any, that each student in your class has at home.

2. You want to know the average number of siblings of all sixth grade students in your school district.

Tell whether a random sample was chosen. Explain.

- **3.** To determine the favorite sport of all the employees, Marcy is surveying the members of the company baseball team.
- 4. A company conducted an employee survey by interviewing 50 employees whose names were selected by being picked out of a box containing the names of all employees.
- 5. Carlos wanted to find out which candidate the majority of his neighbors was supporting. He posted a notice at the neighborhood clubhouse asking people to call him with their opinions.

Mixed Review

Evaluate each expression.

6. 9.03 ÷ <i>x</i> for $x = 3$	7. $7m$ for $m = 2.2$	8. 4.5 - w for $w = 1.9$
9. $17.4 + h$ for $h = 5.9$	10. $k \div 2$ for $k = 6.4$	11. 6.58 + <i>a</i> for $a = 0.45$

Mean, Median, and Mode

The test scores of a math class are shown below. Find the mean, median, and mode for the data.

Test Scores									
78	81	93	91	100	100	81	78	98	100

Mean: Find the sum of the scores and divide by the number of scores.

78 + 81 + 93 + 91 + 100 + 100 + 81 + 78 + 98 + 100 = 900 $900 \div 10 = 90$

Median: Arrange the scores in order from least to greatest. Find the number that is in the middle. Since there is an even number of scores, find the mean of two middle numbers.

78 78 81 81 <u>91 93</u> 98 100 100 100

92←The mean of 91 and 93 is 92.

Mode: Find the number or numbers that appear most often.

100

So, the mean is 90. The median is 92. The mode is 100.

Find the mean, median, and mode for each set of data.

1.		Test Scores						2.	2. Golf Scores									
	85	77	91	97	95	95	79	83	95	93		88	76	92	91	69	76	
	mean media	:									1	mea med	n: ian:					
	mode	:									1	mod	e: _					
3.								Num	ber o	of Schoo	l Da	ys						÷
	Japa	n	Eng	land	Isr	ael	Gern	nany	N	etherla	nds	US	A	Thailar	nd	Swede	n	Canada
	24	3	20	00	2	16	21	0		200		18	0	200		180		180

mean: _____ median: _____ mode: _____

Mean, Median, and Mode

Vocabulary

Write the correct letter from Column 2.

Column 1	Column 2
1. mean	a. number that appears most often in a group of numbers
2. median	b. sum of a group of numbers divided by the number of addends
3. mode	c. middle number in a group of numbers arranged in order

Complete the table.

	Data	Mean	Median	Mode
4.	12, 15, 11, 15, 13, 10, 15			
5.	68, 74, 71, 69, 74, 78, 70			
6.	7.6, 6.2, 6.0, 6.2, 8.1, 6.7			
7.	168, 212, 146, 195, 200, 156			

For 8–10, use the table below.

Test	1	2	3	4	5	6	
Score	91	84	96	89	93	84	

8. Find the mean.

9. Find the median.

10. Find the mode.

Test Scores									
98	88	82	91	83	76	98	100	84	90

11. Use the data above to make a line plot. Use your line plot to find the median and mode.

Mixed Review

Write the numbers in order from least to greatest.

12. 218.4, 284.1, 241.8, 214.8

13. 6.17, 6.71, 6.107, 6.701

3

4

Name

Theoretical Probability

To find theoretical probability, write a ratio.

Probability: number of favorable outcomes number of possible, equally likely outcomes

- 1. You have a spinner numbered 1 to 5. What is the probability of spinning a 2?
 - a. List the possible, equally likely outcomes.
 - b. List the favorable outcomes. _____
 - c. You can write as a fraction the probability of spinning a 2.

 $P(2) = \frac{\text{number of favorable outcomes}}{\text{number of possible, equally likely outcomes}}$

Write the probability as a fraction. _____

- **2.** Each letter of the word *FRACTION* is written on a card and placed in a bag. What is the probability of choosing a *C*?
 - a. List the possible, equally likely outcomes.
 - **b.** List the favorable outcomes. _____
 - c. You can write the probability of choosing a *C* as a fraction.

 $P(C) = \frac{\text{number of favorable outcomes}}{\text{number of possible, equally likely outcomes}}$

Write the probability as a fraction. ____

- **3.** Each letter of the word *NUMBER* is written on a card and placed in a bag. What is the probability of choosing a vowel?
 - a. List the possible, equally likely outcomes.

b. List the favorable outcomes.

c. You can write the probability of choosing a vowel as a fraction.

 $P(vowel) = \frac{number of favorable outcomes}{number of possible, equally likely outcomes}$

Write the probability as a fraction in simplest form.

Reteach RW115

Name _

Theoretical Probability

Use the spinner at the right to find each probability. Write each answer as a fraction, a decimal, and a percent.

1. P(<i>M</i>)		2. P(<i>H</i>)		
3. P(J)		4. P(<i>T</i>)		Н
5. P(A)		6. P(M or A)		
7. P(<i>T</i> or <i>H</i>)		8. P(<i>M</i> , <i>A</i> , or	r T)	
A bag contains one pencil with	5 blue, 3 red, and 2 nout looking. Find e	2 green pencils. ach probability	You choose	
9. P(pink)	10. P(blue)	11.	P(green)	12. P(blue or red)
Cards numbere choose one ca Write <, >, or	ed 2, 2, 2, 3, 4, 4, 5 rd without looking = in each ().	, and 5 are pla . Compare the	ced in a box. Yo probabilities.	DU
13. P(2) 🕖 H	P(4) 14. P(4)	P(5)	15. P(3 or 5)) P(2, 3, or 5)
For 16–18, use	e the figure at the	right. Find eacl	n probability.	
16. P(shaded s	square) or white square)			
18. P(shaded o	or striped square)			
Mixed Review	v			
Evaluate the ex	pression for $x = 1$	I, 2, and 3.		
19. $3x + 5$	20. $4x - x^2$	21.	7(2x + 1)	22. $x^2(6-x)$
Write the fract	ion as a percent.			
23 . $\frac{3}{4}$	24. $\frac{3}{10}$	25.	$\frac{2}{25}$	26. $\frac{6}{5}$

C Harcourt

Name

Experimental Probability

You have a box containing thousands of radish seeds. How many of them will sprout? You can experiment to find out.

Suppose you plant 20 of the seeds, and 15 of them sprout.

 $\frac{15 \text{ seeds sprout}}{20 \text{ seeds in all}} \rightarrow \frac{15}{20} = \frac{3}{4}$

You might conclude, based on your experiment, that about $\frac{3}{4}$ of the seeds will sprout.

So, if you select a seed at random from the box, the **experimental probability** that it will sprout is $\frac{3}{4}$.

The **theoretical probability** that a seed will sprout is $\frac{1}{2}$ if sprouting and not sprouting are equally likely. In this case, the experimental probability is greater than the theoretical probability.

Mel uses a spinner numbered 1 to 5. The table below shows the results of 25 spins.

Number	1	2	3	4	5
Frequency	4	2	6	8	5

1. What is the experimental probability of spinning a 4?

Experimental probability = $\frac{\text{number of favorable outcomes that occur}}{\text{total number of trials}}$

Use the formula to write the experimental probability of spinning a 4 as a fraction and a decimal.

2. What is the theoretical probability of spinning a 4?

Theoretical probability = $\frac{\text{number of favorable outcomes}}{\text{number of possible, equally likely outcomes}}$

Use the formula to write the theoretical probability of spinning a 4 as a fraction and a decimal.

- **3.** How does the experimental probability of spinning a 4 compare with the theoretical probability?
- 4. What is the experimental probability of spinning a 2? Write your answer as a fraction and a decimal.
- 5. What is the theoretical probability of spinning a 2? Write your answer as a fraction and a decimal.
- **6.** How does the experimental probability of spinning a 2 compare with the theoretical probability?

D Harcourt

Experimental Probability

Adam tossed a coin 50 times. For Exercises 1-2, use the table at the right to find the experimental probability. Write the answer as a fraction and as a decimal.

Coin	Heads	Tails		
Toss	22	28		

1. P(Heads) _____ 2. P(Tails) _____

3. What is the theoretical probability of getting heads? _____

Sarah rolled a number cube numbered 1 to 6. The table below shows the results of rolling the cube 50 times. Use the results in the table to find the experimental probability. Write the answer as a fraction and as a decimal.

Number	1	2	3	4	5	6
Times rolled	6	11	5	10	16	2

- 4. P(3) _____
- 7. P(5) _____
 8. P(1) _____
 9. P(6) _____

5. P(4 or 5) _____ 6. P(1 or 2) _____

10. P(1 or 3) _____ 11. P(3 or 6) _____ 12. P(not 4) _____

13. What is the theoretical probability for each number?

14. For which numbers on the number cube is the theoretical probability greater than the experimental probability? _____

Mixed Review

Multiply. Write the answer in simplest form.

15. $\frac{3}{4} \times \frac{2}{3}$ **16.** $\frac{1}{2} \times \frac{5}{6}$ **17.** $\frac{3}{8} \times \frac{4}{9}$ **18.** $\frac{5}{12} \times \frac{3}{10}$

Find the sum or difference. Write the answer in simplest form.

PW118 Practice